	
 		

	
		
		
		
			
			
		outline.pdfjpgconverter.com

			
				
		
		
	
	
		
 		
			
	
	
	
 	
	
	
 	
 		
		

		
			

			
				
				
	
outline.pdfjpgconverter.com

			
			

		
		

		
		

	
	
	

ASP.NET Web PDF Document Viewer/Editor Control Library

We invoke various methods in the following code that demonstrate DML operations. Each method is explained along with its definition in detail as part of the program comments: // example demonstrating first way of selecting object - we use // getORAData() method of OracleResultSet. _demoSelectUsingGetORAData(connection); // example demonstrating second way of selecting object - we use // getObject() method of ResultSet specifying a type map. _demoSelectUsingGetObject(connection); // example demonstrating inserting object(s) _demoInsertUsingSetORAData(connection); // example demonstrating inserting object(s)- second alternative _demoInsertUsingSetObject(connection); // example demonstrating updating object(s) _demoUpdate(connection); // example demonstrating deleting object(s) } finally { JDBCUtil.close (connection); } } Selecting Objects Using the getORAData() Method of OracleResultSet The method _demoSelectUsingGetORAData() uses the method getORAData() of the OracleResultSet interface. This method signature is public ORAData getORAData (int col_index, ORADataFactory factory) This method takes as input the column index of the data in our result set and an ORADataFactory instance. The method _demoSelectUsingGetORAData() follows: private static void _demoSelectUsingGetORAData(Connection connection) throws SQLException { PreparedStatement pstmt = null; OracleResultSet orset = null; try { String selectStmt = "select value(a) from address_table a"; pstmt = connection.prepareStatement (selectStmt); orset = (OracleResultSet) pstmt.executeQuery(); while (orset.next()) {

free qr code generator in vb.net,
onbarcode.barcode.winforms.dll download,
winforms code 128,
ean 128 vb.net,
vb.net ean 13,
vb.net generator pdf417,
itextsharp remove text from pdf c#,
find and replace text in pdf using itextsharp c#,
vb.net generate data matrix,
itextsharp remove text from pdf c#,

The number of events in the lifetime of the HttpApplication object has significantly increased for ASP NET 20 This is because for many events, a Pre and a Post event has been added to the pipeline At first glance it may seem odd to have an event occur after the original event occurs For example, AuthenticateRequest fires after the Framework has completed an authentication check So what do you need PostAuthenticateRequest for The answer to that lies in environments where many traps may be set up for the AuthenticateRequest event In these environments, you can ensure your event fires after all other processing has occurred by trapping the PostAuthenticateRequest event The other consideration is backwards compatibility The ASP NET team couldn t just replace all of the events with a Pre and Post event pair, because that would break all existing globalasax files and HttpModule implementations.

After introducing the ASP.NET framework and the usual organization of the code in ASP.NET web applications, we re ready for a more complicated example. On the next few pages we will present a web application that displays data from the sample Northwind database. As a first step, we will implement an F# module, DataSource.fs, as shown in Listing 14-7, that contains functions for accessing the database. To do this we use F# Linq, which will be described in more detail in 15. In short, F# Linq makes it possible to use F# sequence expressions for writing database queries and thus reduces the number of languages you need to master when writing data-aware web applications. Listing 14-7. App_Code/DataSource.fs: The F# Module for Accessing the Northwind Database #light namespace FSharpWeb open open open open System.Web.Configuration Microsoft.FSharp.Quotations.Typed Microsoft.FSharp.Data.Linq nwind

Next, we invoke the getORAData() method of the OracleResultSet interface. Notice how we invoke the static method getORADataFactory() of the generated class MyAddressORAData: MyAddressORAData address = (MyAddressORAData) orset.getORAData(1, MyAddressORAData.getORADataFactory()); System.out.println(address.getAddress()); } } finally { JDBCUtil.close(orset); JDBCUtil.close(pstmt); } } Selecting Objects Using the getObject() Method of ResultSet The second option for selecting objects is to use the standard getObject(index, map) method specified by the ResultSet interface to retrieve data as instances of ORAData. In this case, we must have an entry in the type map that identifies the factory class. This becomes clearer in the definition of the method _demoSelectUsingGetObject() as follows: private static void _demoSelectUsingGetObject(Connection connection) throws SQLException, ClassNotFoundException { PreparedStatement pstmt = null; ResultSet rset = null; try { In the following code, we populate a type map that maps the address object type to the class MyAddressORAData: HashMap myMap = new HashMap(); myMap.put("BENCHMARK.ADDRESS", Class.forName(MyAddressORAData.class.getName())); String selectStmt = "select value(a) from address_table a"; pstmt = connection.prepareStatement (selectStmt); rset = pstmt.executeQuery(); while (rset.next()) { When retrieving the object using the getObject() method, we also pass the type map, which informs the JDBC driver which class the object type maps to: MyAddressORAData address = (MyAddressORAData) rset.getObject(1, myMap); System.out.println(address.getAddress()); } }

		

	
	
		
		

	
				
				
		 Copyright 2020.
	

	
	

	

	
	
	
	

